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I.  Introduction 
  
 This paper gives a brief survey of integer factorization algorithms.  We offer 
several motivations for the factorization of large integers.  A number of factoring 
algorithms are then explained, and pseudocode is given for each.  Bounds in running time 
are found for algorithms which are always successful, and failure cases are shown for 
probabilistic algorithms.  Finally, the run times of all presented algorithms are plotted for 
certain prime products and compared. 
 
1.  Terminology 
 
 Big O notation: 

The function )(xf  is ))(( xgO as ∞→x  if and only if there are positive 
real constants c, k such that for every kx > , )()(0 ncgnf ≤≤ . 

Example: 12)( 2 ++= xxxf  is )( 2xO  as ∞→x  for 0,3 == kc . 
 

When Big O notation is applied to the running time or storage 
requirements of an algorithm, one may write simply ))(( xgO , and it is 
assumed that ∞→x .  If multiple variables are present, the variable which 
goes to infinity is indicated.  As part of the definition of ))(( xgO , all 
possible executions of the algorithm must be considered as ∞→x . 

 
 Trivial factor: 

A positive integer factor s of N such that s = 1 or s = N. 
 
 Nontrivial factor: 
  A positive integer factor s of N such that Ns <<1 . 
 
 Prime number: 

A positive integer greater than 1 that is divisible by no positive integers 
other than 1 and itself. 

 
2.  Fundamental Theorem of Arithmetic 
 
 The fundamental theorem of arithmetic states that every positive integer can be 
written uniquely as a product of primes, when the primes in the product are written in 
nondecreasing order. 
 
3.  Practical Motivations 
 
 The fundamental theorem of arithmetic implies that any composite integer can be 
factored.  Given the number N = 21, it is straightforward to find the factors of N: 

7321 ⋅= .  Now consider a larger composite number: 
 



 4 

 N = 25195908475657893494027183240048398571429282126204 
                   03202777713783604366202070759555626401852588078440 
                   69182906412495150821892985591491761845028084891200 
                   72844992687392807287776735971418347270261896375014 
                   97182469116507761337985909570009733045974880842840 
                   17974291006424586918171951187461215151726546322822 
                   16869987549182422433637259085141865462043576798423 
                   38718477444792073993423658482382428119816381501067 
                   48104516603773060562016196762561338441436038339044 
                   14952634432190114657544454178424020924616515723350 
                   77870774981712577246796292638635637328991215483143 
                   81678998850404453640235273819513786365643912120103 
                   97122822120720357. 
 
 This integer is known as RSA-2048.  On March 1991, RSA Laboratories 
announced a USD 200,000 award for the successful factorization of this number.  As of 
November 2004, this number has not yet been factored [1]. 
 If one is given two large prime numbers, there are fast algorithms for multiplying 
them together.  However, if one is given the product of two large primes, it is difficult to 
find the prime factors.  The fastest known general-purpose factoring algorithm is the 
General Number Field Sieve (GNFS), which in asymptotic notation takes 
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steps to factor an integer with n decimal digits.  The running time of the algorithm is 
bounded below by functions polynomial in n and bounded above by functions 
exponential in n [2]. 
 The apparent difficulty of factoring large integers is the basis of some modern 
cryptographic algorithms.  The RSA encryption algorithm [3], and the Blum Blum Shub 
cryptographic pseudorandom number generator [4] both rely on the difficulty of factoring 
large integers.  If it were possible to factor products of large prime numbers quickly, 
these algorithms would be insecure. 
 The SSL encryption used for TCP/IP connections over the World Wide Web 
relies on the security of the RSA algorithm [5].  Hence if one could factor large integers 
quickly, "secured" Internet sites would no longer be secure. 
 Finally, in computational complexity theory, it is unknown whether factoring is in 
the complexity class P.  In technical terms, this means that there is no known algorithm 
for answering the question "Does integer N have a factor less than integer s?" in a number 
of steps that is ))(( nPO , where n is the number of digits in N, and P(n) is a polynomial 
function.  Moreover, no one has proved that such an algorithm exists, or does not exist.  
In layman's terms, one can simply ask the question, "What is the fastest algorithm for 
factoring large numbers?"  This is an important open question in mathematics [6]. 
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II.  Algorithms 
 
1.  Algorithm: Trial Division 
 
 Trial division is the simplest algorithm for factoring an integer.  Assume that s 
and t are nontrivial factors of N such that st = N and s ≤  t.  To perform the trial division 

algorithm, one simply checks whether Ns | for s = 2,…, � �N .  When such a divisor s is 
found, then t = N / s is also a factor, and a factorization has been found for N.  The upper 

bound of s ≤ � �N  is provided by the following theorem: 
 
Theorem. If N has nontrivial factors s, t with st = N and s ≤  t, then s ≤ N . 

Proof.  Assume s > N .  Then Nst >≥ , and st > N , which contradicts the 

assumption that st = N.  Hence s ≤ N . 
 
2.  Pseudocode: Trial Division 
 

function trialDivision(N) 
  for s from 2 to floor(sqrt(N)) 
    if s divides N then 
      return s, N/s 
    end if 
  end for 
end function 

 
 If this algorithm is given composite N, then it returns a pair of nontrivial factors s, 
t with .ts ≤   The statement Ns |  is equivalent to ) (mod  0 Ns ≡ , and so it can be 
implemented via modular arithmetic in most languages. 
  
3.  Algorithm: Fermat Factorization 
 
 This algorithm was discovered by mathematician Pierre de Fermat in the 1600s 
[7].  Fermat factorization rewrites a composite number N as the difference of squares: 
 
  22 yxN −=  
 

This difference of squares leads immediately to the factorization of N: 
 

))(( yxyxN −+=  
 
Assume that s and t are nontrivial odd factors of N such that st = N and s ≤  t.  We 

can find x and y such that s = (x – y) and t = (x + y).  Solving this equation, we find that x 
= (s + t) / 2 and y = (t – s) / 2.  Here x and y are integers, since the difference between any 
two odd numbers is even, and an even number is divisible by two.  Since s > 1 and st ≥ , 
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we find that 1≥x  and 0≥y .  For particular x, y satisfying s = (x – y) and t = (x + y), we 

thus know that 2yNx += , and hence Nx ≥ .  Also, Nttsx ≤≤+≤ 2/22/)( . 

 For an algorithm, we choose � 	Nx =1 , and 11 +=+ ii xx .  For each i, we check 

whether Nxy ii −= 2  is an integer and whether )(),( iiii yxyx −+  are nontrivial 

factors of N.  If both of these conditions hold, we return the nontrivial factors.  Otherwise, 
we continue to the next i, and exit once xi = N. 
 
4.  Pseudocode: Fermat Factorization 
 

function fermatFactor(N) 
  for x from ceil(sqrt(N)) to N 
    ySquared := x * x - N 
    if isSquare(ySquared) then 
      y := sqrt(ySquared) 
      s := (x - y) 
      t := (x + y) 
      if s <> 1 and s <> N then 
        return s, t 
      end if 
    end if 
  end for 
end function 

 
Here the isSquare(z) function is true if z is a square number and false 

otherwise.  It is straightforward to construct an isSquare function by taking a square 
root, rounding the answer to an integer, squaring the result, and checking if the original 
number is reproduced. 
 
5.  Algorithm: Pollard rho Factorization 
 
 Pollard's rho method is a probabilistic method for factoring a composite number N 
by iterating a polynomial modulo N.  The method was published by J.M. Pollard in 1975.  
Suppose we construct the sequence: 
 
  ) (mod  20 Nx ≡  

  ) (mod  12
1 Nxx nn +≡+  

 
 This sequence will eventually become periodic.  It can be shown that the length of 
the cycle is less than or equal to N by a proof by contradiction: assume that the length L 
of the cycle is greater than N, however we have only N distinct xn values in our cycle of 
length L>N, so there must exist two xn values are congruent, and these can be identified 
as the “starting points” of a cycle with length less than or equal to N.  Probabilistic 
arguments show that the expected time for this sequence (mod N) to fall into a cycle and 

expected length of the cycle are both proportional to N , for almost all N [8].  Other 
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initial values and iterative functions often have similar behavior under iteration, but the 
function 1)( 2 += nxnf  has been found to work well in practice for factorization. 

Assume that s and t are nontrivial factors of N such that st = N and s ≤  t.  Now 
suppose that we have found nonnegative integers i, j with i < j such that ) (mod  sxx ji ≡  

but ).N (mod  ji xx ≡/   Since )(| ji xxs − , and Ns | , we have that ),gcd(| Nxxs ji − .  By 

assumption 2≥s , thus .2),gcd( ≥− Nxx ji   By definition we know NNxx ji |),gcd( − .  

However, we have that )(| ji xxN −/ , and thus that ),gcd(| NxxN ji −/ .   So we have 

that ),gcd(| NxxN ji −/ , 1),gcd( >− Nxx ji , and NNxx ji |),gcd( − . Therefore 

gcd( ), Nxx ji −  is a nontrivial factor of N. 

 Now we must find i, j such that ) (mod  sxx ji ≡  and ).N (mod  ji xx ≡/   Observe 

that the sequence ) (mod  sxn is periodic with the length of the cycle proportional to s .  

Pollard suggested that nx  be compared to nx2  for n = 1, 2, 3, ….  For each n, we check 

whether gcd( ),2 Nxx nn −  is a nontrivial factor of N.  If gcd( ),2 Nxx nn −  is a trivial 
factor of N, we repeat the iterative process until a factor is found.  If no factor is found, 
the algorithm does not terminate. 
 
6.  Pseudocode: Pollard rho Factorization 
 

function pollardRho(N) 
  # Initial values x(i) and x(2*i) for i = 0. 
  xi  := 2 
  x2i := 2 
  do 
    # Find x(i+1) and x(2*(i+1)) 
    xiPrime  := xi ^ 2 + 1 
    x2iPrime := (x2i ^ 2 + 1) ^ 2 + 1 
    # Increment i: change our running values for x(i), x(2*i). 
    xi  := xiPrime % N 
    x2i := x2iPrime % N 
    s := gcd(xi - x2i, N) 
    if s <> 1 and s <> N then 
      return s, N/s 
    end if 
  end do 
end function 

 
 Here a % m is a modulo operation, which returns the least nonnegative integer y 
such that ). (mod  mya ≡  
 
7.  Algorithm: Brent's Factorization Method 
 
 Brent's factorization method is an improvement to Pollard's rho algorithm, 
published by R. Brent in 1980 [9].  In Pollard's rho algorithm, one tries to find a 
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nontrivial factor s of N by finding indices i, j with i < j such that ) (mod  sxx ji ≡  and 

).N (mod  ji xx ≡/   The nx  sequence is defined by the recurrence relation: 

 
  ) (mod  20 Nx ≡  

  ) (mod  22
1 Nxx nn +≡+  

 
 Pollard suggested that nx  be compared to nx2  for n = 1, 2, 3, ….  Brent's 

improvement to Pollard's method is to compare nx  to mx , where m is the largest integral 
power of 2 less than n. 
 
8.  Pseudocode: Brent's Factorization Method 
 

function brentFactor(N) 
  # Initial values x(i) and x(m) for i = 0. 
  xi  := 2 
  xm  := 2 
  for i from 1 to infinity 
    # Find x(i) from x(i-1). 
    xi := (xi ^ 2 + 1) % N 
    s := gcd(xi - xm, N) 
    if s <> 1 and s <> N then 
      return s, N/s 
    end if 
    if integralPowerOf2(i) then 
      xm := xi 
    end if 
  end do 
end function 

 
Here the function integralPowerOf2(z) is true if z is an integral power of 2 

and false otherwise.  An inefficient implementation for this function can be made by 
checking successive powers of 2 until a power of 2 equals or exceeds z: 
 

function integralPowerOf2(z) 
  pow2 := 1 
  while pow2 <= z do 
    if pow2 = z then 
      return true 
    end if 
    pow2 := pow2 * 2 
  end while 
  return false 
end function 

 
In terms of more efficient operations, integralPowerOf2(z) is true if and only if  

(z&(z-1)) is zero, where & is the bitwise AND operation [10].  A proof follows.  
 
Theorem. If z is a positive integer, then z is an integral power of 2 if and only if 

0)1(& =−zz , where a & b denotes the bitwise AND operation of a and b. 
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Proof.  Let there be d binary bits in z, and let ( · )i be an operator which gives the ith 
binary bit of ( · ), where i = 1 is the least significant bit.  If z is an integral power of 2, 
then clearly kz  = 0 for k = 1, 2, …, 1−d , and 1=dz .  We also have that zz <− 1 , so 

clearly 0)1( =− dz .  Using the truth table for the logical AND operator, we find that 

( )( )kzz 1& −  must be 0 for k = 1…d.  Hence ( )( ) 01& =− kzz .  In the case that z is not 

an integral power of 2, 1=dz .  Let α  be the largest integral power of 2 that is less than 

z.  Then α>z , hence α≥− 1z , and thus 1)1( ==− ddz α .   Using the truth table for the 

logical AND operator at bit d we find that ( )( ) 11& =− dzz , hence ( )( ) 01& ≠− kzz .  

Therefore, z is an integral power of 2 if and only if 0)1(& =−zz . 
 
9.  Algorithm: Pollard p-1 Factorization 
 
 Pollard's p-1 factorization method was published by J. M. Pollard in 1974 [11].  It 
is based on Fermat's little theorem, which states: 
 
  If p is prime, a is a natural number, and ap |/ , then ) (mod  11 pa p ≡− . 
 
 Suppose we have a positive integer 1≥k and a prime p>2 such that ! | )1( kp −  .  
Now we can apply Fermat's little theorem with a = 2: 
 
  ) (mod  12 1 pp ≡−  
 
 But since ! | )1( kp −  , we can write qpk )1(! −=  for some positive integer q.  We 
have: 
 

  ( ) ) (mod  1122 1! pqqpk ≡≡≡ −  
 
 Hence 12 | ! −kp .  If N is an integer which has nontrivial prime factor p, then p 

also divides Ntk +−12 !  for all integers t.  We can compute ) (mod 12 ! Nx k
k −≡  for k = 

1, 2, 3, …, and for each kx  check whether there exists an integer ),gcd( Nxr kk =  which 

divides both kx  and N.  If ! | )1( kp −  , then we know kxp |  and hence kr  is a nontrivial 

factor of N.  If  kr  is not a nontrivial factor of N, then it is a trivial factor of N, i.e. kr  = 1 

or kr = N.  The algorithm is then: 

Compute  ),12gcd( ! Nr k
k −=  for k = 1, 2, 3….  If },1{ Nrk ∉ , then kr  is a 

nontrivial factor and we are done. 

For efficiency purposes, we can write ( ) ) (mod  22 )!1(! N
kkk −≡ , so that if )!1(2 −k  is 

known (mod N), !2k  can be computed by a single modular exponentiation operation. 
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10.  Pseudocode: Pollard p-1 Factorization 
 

function pollard_p1(N) 
  # Initial value 2^(k!) for k = 0. 
  two_k_fact := 1 
  for k from 1 to infinity 
    # Calculate 2^(k!) (mod N) from 2^((k-1)!). 
    two_k_fact := modPow(two_k_fact, k, N) 
    rk := gcd(two_k_fact - 1, N) 
    if rk <> 1 and rk <> N then 
      return rk, N/rk 
    end if 
  end for 
end function 

 
Here modPow(a, b, m) returns the least nonnegative integer y such that 

). (mod  mya b ≡   This function is typically provided in languages with big integer 
operations, and is known as "modular exponentiation." 

For languages without modular exponentiation, we present an efficient algorithm 
for modular exponentiation.   Write b in terms of its binary digits 10 ... −nbb , so 

1
1

1
1

0
0 2...22 −

−+++= n
nbbbb  and observe that ba  can be rewritten as 

 

 ( ) ( ) ( ) 1111001
1

1
1

0
0 222222 ......

−−−
− ⋅⋅=⋅⋅= nnn

n
bbb

bbbb aaaaaaa . 
 

 Note that for any k, ( ) kk b
a2  is simply 1 if 0=kb , and 

k

a 2 otherwise.  Thus we 

have: 
 

 ∏
−

≠
=

=
1

0

0

2
n

b

k

b

k

k

aa  

 

 Also note that ( )22222 1 kkk

aaa == ⋅+

.  Via a process of repeated squaring, we can 
thus construct an algorithm which returns the least nonnegative integer y such that 

) (mod  myab ≡ . 
 

function modPow(a, b, m): 
  ans := 1 
  a := a % m 
  for k from 0 to infinity 
    if 2^k>b then 
      return ans 
    end if 
    if (bit k of b is nonzero) then 
      ans := (ans * a) % m 
    a := (a * a) % m 
  end for 
end function 
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 Here a % m is a modulo operation, which returns the least nonnegative integer y 
such that ). (mod  mya ≡  
 

III.  Running Times 
 
1.  Running Time: Trial Division 
 
 The worst case running time for the trial division algorithm occurs when 

Nts == , and 2sN = .  In this case, we test divisibility for exactly 1−N  integers.  

Thus the algorithm takes )( NO  steps, or when written in terms of the number of digits 

n of N, it requires )( 2/neO steps. 
Each divisibility test can be carried out in )(log NO  time [13].  There are no more 

than N  such tests, so at worst the trial division algorithm takes )log( NNO  time.  

When written in terms of the number of digits n of N, trial division takes )( 2/nneO  time. 
 
2.  Running Time: Fermat Factorization 
 
 Assuming that N is the product of odd primes, the Fermat factorization as 
presented in Section II.4 makes no more than N steps through the for loop.  Hence 
Fermat factorization takes )(NO  steps.  When written in terms of the number of digits n 

of N, the algorithm takes )( neO steps. 
 
3.  Running Time: Empirical Results 
 
 Figure 1 shows a plot of the median number of steps for each algorithm versus the 
number of decimal digits d in the prime factors, where "steps" is defined as the number of 
iterations through the for loop. 
 For each value of d, each algorithm was tested 100 times.  For each test, integers 
s, t were chosen in a uniform random manner from the set of integers having d decimal 
digits.  If s was composite, or t was composite, or s equaled t, then the numbers were re-
selected.  Once a valid pair s, t was found, the algorithm was run on the product st for up 
to 106 steps.  The median number of steps is plotted for each algorithm. 
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Figure 1 
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 Although the Brent factorization algorithm was touted as an improvement to the 
Pollard rho method, it appears to be slower in this simulation.  In terms of median 
running times for these data, the Pollard rho and Pollard p-1 methods are fastest, and the 
trial factorization method is slowest. 
 The Maple source code used to produce these data is presented in Appendix A. 
 

IV.  Failures of Probabilistic Algorithms 
 
 The trial division and Fermat factorization algorithms always terminate, and 
upper bounds can be derived for the running times of these algorithms in terms of N, the 
number to be factored.  The Pollard rho algorithm, Brent's method, and the Pollard p-1 
algorithm are probabilistic, and may not finish, even for small values of N. 
 
Example.  Consider the Pollard rho algorithm for N = 21 = 73 ⋅ .  The sequence of nx  
values generated by the algorithm is 
 
 21) (mod  20 ≡x  

 21) (mod  512
01 ≡+≡ xx  

21) (mod  512
12 ≡+≡ xx  

21) (mod  512
1 ≡+≡ −nn xx  for 1≥n  



 13 

 
 If n ≥  1, 02 =− nn xx .  The algorithm at each step for n = 1, 2, … computes 

.),0gcd(),gcd( 2 NNNxx nn ==−   The algorithm never finds a nontrivial factor, and 
never terminates. 
 
Example.  Consider the Pollard p-1 algorithm for N = 65 = 513 ⋅ .  The sequence of kx  
values generated by the algorithm is: 
 
 )65 (mod  12 ! −≡ k

kx   k = 1, 2, 3, … 

 65) (mod  1121
1 ≡−≡x  

 65) (mod  3122
2 ≡−≡x  

 65) (mod  63126
3 ≡−≡x  

 65) (mod  01224
4 ≡−≡x  

 65) (mod  01111)( 1n1
1 ≡−≡−+≡ ++

+
n

nn xx  for 5≥k  
 
 The Pollard p-1 algorithm computes at each step ),gcd( Nxk .  For the first three 

steps, we find that gcd(1, 65) = 1, gcd(3, 65) = 1, and gcd(63, 65) = 1.  For steps 4≥k  
we find gcd(0, 65) = 65.  Hence the algorithm never finds a nontrivial factor, and never 
terminates. 
 

V.  Conclusion 
 
 There are no known algorithms which can factor arbitrary large integers 
efficiently.  Probabilistic algorithms such as the Pollard rho and Pollard p-1 algorithm are 
in most cases more efficient than the trial division and Fermat factorization algorithms.  
However, probabilistic algorithms can fail when given certain prime products: for 
example, Pollard's rho algorithm fails for N = 21.   Integer factorization algorithms are an 
important subject in mathematics, both for complexity theory, and for practical purposes 
such as data security on computers. 
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Appendix A.  Maple Source Code for Simulation 
 
> # Define each factorization algorithm 
 
> # Trial division.  Factor N, return s, t, iters, where s*t = N, and 
  # iters is the number of iterations made through the for loop.  If 
  # more than maxsteps iterations are made, returns 1, N, maxsteps. 
  trial_factor := proc(N, maxsteps) 
    local x, y, iters; 
    iters := 1; 
    for x from 2 to floor(sqrt(N)) do 
      if modp(N, x) = 0 then        # If y is an integer, return factors. 
        return x, N/x, iters; 
      fi; 
      if iters >= maxsteps then 
        return 1, N, maxsteps; 
      fi; 
      iters := iters + 1; 
    od; 
  end; 
 
> # Fermat factorization.  Same arguments and return value as trial_factor. 
  fermat_factor := proc(N, maxsteps) 
    local x, y, iters; 
    iters := 1; 
    # Look for N = x^2 - y^2, for x >= 1, y >= 1. 
    # Iterate over x and check y. 
    for x from ceil(sqrt(N)) to infinity do 
      ySquared := x^2 - N; 
      y := isqrt(ySquared); 
      if y*y=ySquared then        # If y is an integer, return factors. 
        return x-y, x+y, iters; 
      fi; 
      if iters >= maxsteps then 
        return 1, N, maxsteps; 
      fi; 
      iters := iters + 1; 
    od; 
  end; 
 
> # Pollard rho factorization.  Same arguments as trial_factor. 
> pollard_rho := proc(N, maxsteps) 
    local xi, x2i, f, iters, p; 
    # f(x) function iterated in Pollard rho method, we use f(x) = x^2+1. 
    f := proc(x) 
      return modp(x * x + 1, N); 
    end; 
    iters := 1; 
    # Initial values for x(i) and x(2*i), where i=1.  We use x(1) = 2. 
    xi := f(2); 
    x2i := f(f(2)); 
    while true do 
      # Compute p = gcd(x(i)-x(2*i), N). 
      p := gcd(xi - x2i, N); 
      # If p is a nontrivial factor, return factors. 
      if p <> 1 and p <> N then 
        return p, N/p, iters; 
      fi; 
      # Increase i by one.  Note we have to apply f twice to find 
      # x(2*(i+1)) = f(f(x(2*i)). 
      xi := f(xi); 
      x2i := f(f(x2i)); 
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      # Increment iteration counter. 
      iters := iters + 1; 
      if iters >= maxsteps then 
        return 1, N, maxsteps; 
      fi; 
    od; 
  end; 
 
> # Pollard p-1 factorization.  Same arguments as trial_factor. 
> pollard_p1 := proc(N, maxsteps) 
    local two_k_fact, p, k, iters; 
    two_k_fact := 2^(1);          # 2^(k!) for (initially) k = 1. 
    iters := 1;                   # Number of iterations made through for loop. 
    for k from 2 to infinity do 
      # Compute p = gcd(2^(k!)-1, N) for current k value. 
      p := gcd(two_k_fact - 1, N); 
      # If p is a nontrivial factor, return factors. 
      if p <> 1 and p <> N then 
        return p, N/p, iters; 
      fi; 
      # Find 2^((k+1)!) = (2^(k!)) ^ (k+1). 
      two_k_fact := two_k_fact &^ (k+1) mod N; 
      # Increment number of iterations. 
      iters := iters + 1; 
      if iters >= maxsteps then 
        return 1, N, maxsteps; 
      fi; 
    od; 
  end; 
 
> # Brent factorization.  Same arguments and return value as trial_factor. 
> brent_factor := proc(N, maxsteps) 
    local xi, x2i, f, iters, p; 
    # f(x) function iterated in Pollard rho method, we use f(x) = x^2+1. 
    f := proc(x) 
      return modp(x * x + 1, N); 
    end; 
    iters := 1; 
    # Initial values for x(i) and x(m), where i=1. 
    xi := f(2); 
    xm := 2; 
    while true do 
      # Compute p = gcd(x(i)-x(m), N). 
      p := gcd(xi - xm, N); 
      # If p is a nontrivial factor, return factors. 
      if p <> 1 and p <> N then 
        return p, N/p, iters; 
      fi; 
      # Increase i by one.  Update x(m) as needed. 
      if 2^ilog2(iters) = iters then 
        xm := xi; 
      fi; 
      xi := f(xi); 
      # Increment iteration counter. 
      iters := iters + 1; 
      if iters >= maxsteps then 
        return 1, N, maxsteps; 
      fi; 
    od; 
  end; 
 
> # Given 'algo', which should be one of the factorization functions 
  # defined above, and k, returns the median time to factor the product 
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  # of two randomly selected k-digit primes, over 100 runs of the algorithm. 
> median_steps_for_k_digit_prime := proc(algo, k) 
    local i, times, p, q, p1, p2, iter; 
    # Initially empty seqence of the number of steps made by the given algo 
    # for each pair of random primes. 
    times := seq(j, j=0..-1); 
    # Run the algorithm 100 times on products of two random k-digit primes. 
    for i from 1 to 100 do 
      while 1=1 do 
        p := rand(10^(k-1)..10^k-1)(); 
        q := rand(10^(k-1)..10^k-1)(); 
        if isprime(p) and isprime(q) and p <> q then 
          break; 
        fi; 
      od; 
      # Run the algorithm, but bail out after 1e6 steps. 
      p1, p2, iter := algo(p*q, 1000000); 
      times := times, iter; 
    od; 
    times := sort([times]); 
    return times[1+floor(nops(times)/2)]; 
  end; 
 
> # Reproduce the median number of steps for each algorithm when 
> # given the products of two randomly selected 4-digit primes. 
> 
> # Vary the last argument to reproduce the data in Figure 1. 
> 
> median_steps_for_k_digit_prime(trial_factor, 4); 
                               3342 
> median_steps_for_k_digit_prime(fermat_factor, 4); 
                               101 
> median_steps_for_k_digit_prime(pollard_rho, 4); 
                               40 
> median_steps_for_k_digit_prime(pollard_p1, 4); 
                               36 
> median_steps_for_k_digit_prime(brent_factor, 4); 
                               97 
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