

Integer Factorization Algorithms

Connelly Barnes

Department of Physics, Oregon State University

December 7, 2004

This document has been placed in the public domain.

 2

Contents

I. Introduction 3
 1. Terminology 3
 2. Fundamental Theorem of Arithmetic 3
 3. Practical Motivation 3

II. Algorithms 5
 1. Algorithm: Trial Division 5
 2. Pseudocode: Trial Division 5
 3. Algorithm: Fermat Factorization 5
 4. Pseudocode: Fermat Factorization 6
 5. Algorithm: Pollard rho Factorization 6
 6. Pseudocode: Pollard rho Factorization 7
 7. Algorithm: Brent’s Factorization Method 7
 8. Pseudocode: Brent’s Factorization Method 8
 9. Algorithm: Pollard p-1 Factorization 9
 10. Pseudocode: Pollard p-1 Factorization 10

III. Running times 11
 1. Running time: Trial Division 11
 2. Running time: Fermat Factorization 11
 3. Running times: Empirical Results 11

IV. Failures of Probabilistic Algorithms 12

V. Conclusion 13

Appendix A. Maple Source Code for Simulation 14

Appendix B. References 17

 3

I. Introduction

 This paper gives a brief survey of integer factorization algorithms. We offer
several motivations for the factorization of large integers. A number of factoring
algorithms are then explained, and pseudocode is given for each. Bounds in running time
are found for algorithms which are always successful, and failure cases are shown for
probabilistic algorithms. Finally, the run times of all presented algorithms are plotted for
certain prime products and compared.

1. Terminology

 Big O notation:

The function)(xf is))((xgO as ∞→x if and only if there are positive
real constants c, k such that for every kx > ,)()(0 ncgnf ≤≤ .

Example: 12)(2 ++= xxxf is)(2xO as ∞→x for 0,3 == kc .

When Big O notation is applied to the running time or storage
requirements of an algorithm, one may write simply))((xgO , and it is
assumed that ∞→x . If multiple variables are present, the variable which
goes to infinity is indicated. As part of the definition of))((xgO , all
possible executions of the algorithm must be considered as ∞→x .

 Trivial factor:

A positive integer factor s of N such that s = 1 or s = N.

 Nontrivial factor:
 A positive integer factor s of N such that Ns <<1 .

 Prime number:

A positive integer greater than 1 that is divisible by no positive integers
other than 1 and itself.

2. Fundamental Theorem of Arithmetic

 The fundamental theorem of arithmetic states that every positive integer can be
written uniquely as a product of primes, when the primes in the product are written in
nondecreasing order.

3. Practical Motivations

 The fundamental theorem of arithmetic implies that any composite integer can be
factored. Given the number N = 21, it is straightforward to find the factors of N:

7321 ⋅= . Now consider a larger composite number:

 4

 N = 25195908475657893494027183240048398571429282126204
 03202777713783604366202070759555626401852588078440
 69182906412495150821892985591491761845028084891200
 72844992687392807287776735971418347270261896375014
 97182469116507761337985909570009733045974880842840
 17974291006424586918171951187461215151726546322822
 16869987549182422433637259085141865462043576798423
 38718477444792073993423658482382428119816381501067
 48104516603773060562016196762561338441436038339044
 14952634432190114657544454178424020924616515723350
 77870774981712577246796292638635637328991215483143
 81678998850404453640235273819513786365643912120103
 97122822120720357.

 This integer is known as RSA-2048. On March 1991, RSA Laboratories
announced a USD 200,000 award for the successful factorization of this number. As of
November 2004, this number has not yet been factored [1].
 If one is given two large prime numbers, there are fast algorithms for multiplying
them together. However, if one is given the product of two large primes, it is difficult to
find the prime factors. The fastest known general-purpose factoring algorithm is the
General Number Field Sieve (GNFS), which in asymptotic notation takes

 ()
�
�

�

�

�
�

�

�

�
�
�

	

�

�
�
�

�
�
�

�= 3/2
3/1

log
9

64
exp nnOS

steps to factor an integer with n decimal digits. The running time of the algorithm is
bounded below by functions polynomial in n and bounded above by functions
exponential in n [2].
 The apparent difficulty of factoring large integers is the basis of some modern
cryptographic algorithms. The RSA encryption algorithm [3], and the Blum Blum Shub
cryptographic pseudorandom number generator [4] both rely on the difficulty of factoring
large integers. If it were possible to factor products of large prime numbers quickly,
these algorithms would be insecure.
 The SSL encryption used for TCP/IP connections over the World Wide Web
relies on the security of the RSA algorithm [5]. Hence if one could factor large integers
quickly, "secured" Internet sites would no longer be secure.
 Finally, in computational complexity theory, it is unknown whether factoring is in
the complexity class P. In technical terms, this means that there is no known algorithm
for answering the question "Does integer N have a factor less than integer s?" in a number
of steps that is))((nPO , where n is the number of digits in N, and P(n) is a polynomial
function. Moreover, no one has proved that such an algorithm exists, or does not exist.
In layman's terms, one can simply ask the question, "What is the fastest algorithm for
factoring large numbers?" This is an important open question in mathematics [6].

 5

II. Algorithms

1. Algorithm: Trial Division

 Trial division is the simplest algorithm for factoring an integer. Assume that s
and t are nontrivial factors of N such that st = N and s ≤ t. To perform the trial division

algorithm, one simply checks whether Ns | for s = 2,…, � �N . When such a divisor s is
found, then t = N / s is also a factor, and a factorization has been found for N. The upper

bound of s ≤ � �N is provided by the following theorem:

Theorem. If N has nontrivial factors s, t with st = N and s ≤ t, then s ≤ N .

Proof. Assume s > N . Then Nst >≥ , and st > N , which contradicts the

assumption that st = N. Hence s ≤ N .

2. Pseudocode: Trial Division

function trialDivision(N)
 for s from 2 to floor(sqrt(N))
 if s divides N then
 return s, N/s
 end if
 end for
end function

 If this algorithm is given composite N, then it returns a pair of nontrivial factors s,
t with .ts ≤ The statement Ns | is equivalent to) (mod 0 Ns ≡ , and so it can be
implemented via modular arithmetic in most languages.

3. Algorithm: Fermat Factorization

 This algorithm was discovered by mathematician Pierre de Fermat in the 1600s
[7]. Fermat factorization rewrites a composite number N as the difference of squares:

 22 yxN −=

This difference of squares leads immediately to the factorization of N:

))((yxyxN −+=

Assume that s and t are nontrivial odd factors of N such that st = N and s ≤ t. We

can find x and y such that s = (x – y) and t = (x + y). Solving this equation, we find that x
= (s + t) / 2 and y = (t – s) / 2. Here x and y are integers, since the difference between any
two odd numbers is even, and an even number is divisible by two. Since s > 1 and st ≥ ,

 6

we find that 1≥x and 0≥y . For particular x, y satisfying s = (x – y) and t = (x + y), we

thus know that 2yNx += , and hence Nx ≥ . Also, Nttsx ≤≤+≤ 2/22/)(.

 For an algorithm, we choose � 	Nx =1 , and 11 +=+ ii xx . For each i, we check

whether Nxy ii −= 2 is an integer and whether)(),(iiii yxyx −+ are nontrivial

factors of N. If both of these conditions hold, we return the nontrivial factors. Otherwise,
we continue to the next i, and exit once xi = N.

4. Pseudocode: Fermat Factorization

function fermatFactor(N)
 for x from ceil(sqrt(N)) to N
 ySquared := x * x - N
 if isSquare(ySquared) then
 y := sqrt(ySquared)
 s := (x - y)
 t := (x + y)
 if s <> 1 and s <> N then
 return s, t
 end if
 end if
 end for
end function

Here the isSquare(z) function is true if z is a square number and false

otherwise. It is straightforward to construct an isSquare function by taking a square
root, rounding the answer to an integer, squaring the result, and checking if the original
number is reproduced.

5. Algorithm: Pollard rho Factorization

 Pollard's rho method is a probabilistic method for factoring a composite number N
by iterating a polynomial modulo N. The method was published by J.M. Pollard in 1975.
Suppose we construct the sequence:

) (mod 20 Nx ≡

) (mod 12
1 Nxx nn +≡+

 This sequence will eventually become periodic. It can be shown that the length of
the cycle is less than or equal to N by a proof by contradiction: assume that the length L
of the cycle is greater than N, however we have only N distinct xn values in our cycle of
length L>N, so there must exist two xn values are congruent, and these can be identified
as the “starting points” of a cycle with length less than or equal to N. Probabilistic
arguments show that the expected time for this sequence (mod N) to fall into a cycle and

expected length of the cycle are both proportional to N , for almost all N [8]. Other

 7

initial values and iterative functions often have similar behavior under iteration, but the
function 1)(2 += nxnf has been found to work well in practice for factorization.

Assume that s and t are nontrivial factors of N such that st = N and s ≤ t. Now
suppose that we have found nonnegative integers i, j with i < j such that) (mod sxx ji ≡

but).N (mod ji xx ≡/ Since)(| ji xxs − , and Ns | , we have that),gcd(| Nxxs ji − . By

assumption 2≥s , thus .2),gcd(≥− Nxx ji By definition we know NNxx ji |),gcd(− .

However, we have that)(| ji xxN −/ , and thus that),gcd(| NxxN ji −/ . So we have

that),gcd(| NxxN ji −/ , 1),gcd(>− Nxx ji , and NNxx ji |),gcd(− . Therefore

gcd(), Nxx ji − is a nontrivial factor of N.

 Now we must find i, j such that) (mod sxx ji ≡ and).N (mod ji xx ≡/ Observe

that the sequence) (mod sxn is periodic with the length of the cycle proportional to s .

Pollard suggested that nx be compared to nx2 for n = 1, 2, 3, …. For each n, we check

whether gcd(),2 Nxx nn − is a nontrivial factor of N. If gcd(),2 Nxx nn − is a trivial
factor of N, we repeat the iterative process until a factor is found. If no factor is found,
the algorithm does not terminate.

6. Pseudocode: Pollard rho Factorization

function pollardRho(N)
 # Initial values x(i) and x(2*i) for i = 0.
 xi := 2
 x2i := 2
 do
 # Find x(i+1) and x(2*(i+1))
 xiPrime := xi ^ 2 + 1
 x2iPrime := (x2i ^ 2 + 1) ^ 2 + 1
 # Increment i: change our running values for x(i), x(2*i).
 xi := xiPrime % N
 x2i := x2iPrime % N
 s := gcd(xi - x2i, N)
 if s <> 1 and s <> N then
 return s, N/s
 end if
 end do
end function

 Here a % m is a modulo operation, which returns the least nonnegative integer y
such that). (mod mya ≡

7. Algorithm: Brent's Factorization Method

 Brent's factorization method is an improvement to Pollard's rho algorithm,
published by R. Brent in 1980 [9]. In Pollard's rho algorithm, one tries to find a

 8

nontrivial factor s of N by finding indices i, j with i < j such that) (mod sxx ji ≡ and

).N (mod ji xx ≡/ The nx sequence is defined by the recurrence relation:

) (mod 20 Nx ≡

) (mod 22
1 Nxx nn +≡+

 Pollard suggested that nx be compared to nx2 for n = 1, 2, 3, …. Brent's

improvement to Pollard's method is to compare nx to mx , where m is the largest integral
power of 2 less than n.

8. Pseudocode: Brent's Factorization Method

function brentFactor(N)
 # Initial values x(i) and x(m) for i = 0.
 xi := 2
 xm := 2
 for i from 1 to infinity
 # Find x(i) from x(i-1).
 xi := (xi ^ 2 + 1) % N
 s := gcd(xi - xm, N)
 if s <> 1 and s <> N then
 return s, N/s
 end if
 if integralPowerOf2(i) then
 xm := xi
 end if
 end do
end function

Here the function integralPowerOf2(z) is true if z is an integral power of 2

and false otherwise. An inefficient implementation for this function can be made by
checking successive powers of 2 until a power of 2 equals or exceeds z:

function integralPowerOf2(z)
 pow2 := 1
 while pow2 <= z do
 if pow2 = z then
 return true
 end if
 pow2 := pow2 * 2
 end while
 return false
end function

In terms of more efficient operations, integralPowerOf2(z) is true if and only if

(z&(z-1)) is zero, where & is the bitwise AND operation [10]. A proof follows.

Theorem. If z is a positive integer, then z is an integral power of 2 if and only if

0)1(& =−zz , where a & b denotes the bitwise AND operation of a and b.

 9

Proof. Let there be d binary bits in z, and let (·)i be an operator which gives the ith
binary bit of (·), where i = 1 is the least significant bit. If z is an integral power of 2,
then clearly kz = 0 for k = 1, 2, …, 1−d , and 1=dz . We also have that zz <− 1 , so

clearly 0)1(=− dz . Using the truth table for the logical AND operator, we find that

()()kzz 1& − must be 0 for k = 1…d. Hence ()() 01& =− kzz . In the case that z is not

an integral power of 2, 1=dz . Let α be the largest integral power of 2 that is less than

z. Then α>z , hence α≥− 1z , and thus 1)1(==− ddz α . Using the truth table for the

logical AND operator at bit d we find that ()() 11& =− dzz , hence ()() 01& ≠− kzz .

Therefore, z is an integral power of 2 if and only if 0)1(& =−zz .

9. Algorithm: Pollard p-1 Factorization

 Pollard's p-1 factorization method was published by J. M. Pollard in 1974 [11]. It
is based on Fermat's little theorem, which states:

 If p is prime, a is a natural number, and ap |/ , then) (mod 11 pa p ≡− .

 Suppose we have a positive integer 1≥k and a prime p>2 such that ! |)1(kp − .
Now we can apply Fermat's little theorem with a = 2:

) (mod 12 1 pp ≡−

 But since ! |)1(kp − , we can write qpk)1(! −= for some positive integer q. We
have:

 ()) (mod 1122 1! pqqpk ≡≡≡ −

 Hence 12 | ! −kp . If N is an integer which has nontrivial prime factor p, then p

also divides Ntk +−12 ! for all integers t. We can compute) (mod 12 ! Nx k
k −≡ for k =

1, 2, 3, …, and for each kx check whether there exists an integer),gcd(Nxr kk = which

divides both kx and N. If ! |)1(kp − , then we know kxp | and hence kr is a nontrivial

factor of N. If kr is not a nontrivial factor of N, then it is a trivial factor of N, i.e. kr = 1

or kr = N. The algorithm is then:

Compute),12gcd(! Nr k
k −= for k = 1, 2, 3…. If },1{ Nrk ∉ , then kr is a

nontrivial factor and we are done.

For efficiency purposes, we can write ()) (mod 22)!1(! N
kkk −≡ , so that if)!1(2 −k is

known (mod N), !2k can be computed by a single modular exponentiation operation.

 10

10. Pseudocode: Pollard p-1 Factorization

function pollard_p1(N)
 # Initial value 2^(k!) for k = 0.
 two_k_fact := 1
 for k from 1 to infinity
 # Calculate 2^(k!) (mod N) from 2^((k-1)!).
 two_k_fact := modPow(two_k_fact, k, N)
 rk := gcd(two_k_fact - 1, N)
 if rk <> 1 and rk <> N then
 return rk, N/rk
 end if
 end for
end function

Here modPow(a, b, m) returns the least nonnegative integer y such that

). (mod mya b ≡ This function is typically provided in languages with big integer
operations, and is known as "modular exponentiation."

For languages without modular exponentiation, we present an efficient algorithm
for modular exponentiation. Write b in terms of its binary digits 10 ... −nbb , so

1
1

1
1

0
0 2...22 −

−+++= n
nbbbb and observe that ba can be rewritten as

 () () () 1111001
1

1
1

0
0 222222

−−−
− ⋅⋅=⋅⋅= nnn

n
bbb

bbbb aaaaaaa .

 Note that for any k, () kk b
a2 is simply 1 if 0=kb , and

k

a 2 otherwise. Thus we

have:

 ∏
−

≠
=

=
1

0

0

2
n

b

k

b

k

k

aa

 Also note that ()22222 1 kkk

aaa == ⋅+

. Via a process of repeated squaring, we can
thus construct an algorithm which returns the least nonnegative integer y such that

) (mod myab ≡ .

function modPow(a, b, m):
 ans := 1
 a := a % m
 for k from 0 to infinity
 if 2^k>b then
 return ans
 end if
 if (bit k of b is nonzero) then
 ans := (ans * a) % m
 a := (a * a) % m
 end for
end function

 11

 Here a % m is a modulo operation, which returns the least nonnegative integer y
such that). (mod mya ≡

III. Running Times

1. Running Time: Trial Division

 The worst case running time for the trial division algorithm occurs when

Nts == , and 2sN = . In this case, we test divisibility for exactly 1−N integers.

Thus the algorithm takes)(NO steps, or when written in terms of the number of digits

n of N, it requires)(2/neO steps.
Each divisibility test can be carried out in)(log NO time [13]. There are no more

than N such tests, so at worst the trial division algorithm takes)log(NNO time.

When written in terms of the number of digits n of N, trial division takes)(2/nneO time.

2. Running Time: Fermat Factorization

 Assuming that N is the product of odd primes, the Fermat factorization as
presented in Section II.4 makes no more than N steps through the for loop. Hence
Fermat factorization takes)(NO steps. When written in terms of the number of digits n

of N, the algorithm takes)(neO steps.

3. Running Time: Empirical Results

 Figure 1 shows a plot of the median number of steps for each algorithm versus the
number of decimal digits d in the prime factors, where "steps" is defined as the number of
iterations through the for loop.
 For each value of d, each algorithm was tested 100 times. For each test, integers
s, t were chosen in a uniform random manner from the set of integers having d decimal
digits. If s was composite, or t was composite, or s equaled t, then the numbers were re-
selected. Once a valid pair s, t was found, the algorithm was run on the product st for up
to 106 steps. The median number of steps is plotted for each algorithm.

 12

Figure 1

Number of Steps vs Digits in Prime Factors

1

10

100

1000

10000

100000

1000000

0 1 2 3 4 5 6 7

Decimal Digits in Prime Factors

N
u

m
b

er
 o

f
S

te
p

s

Pollard rho

Pollard p-1

Trial factorization

Fermat factorization

Brent factorization

 Although the Brent factorization algorithm was touted as an improvement to the
Pollard rho method, it appears to be slower in this simulation. In terms of median
running times for these data, the Pollard rho and Pollard p-1 methods are fastest, and the
trial factorization method is slowest.
 The Maple source code used to produce these data is presented in Appendix A.

IV. Failures of Probabilistic Algorithms

 The trial division and Fermat factorization algorithms always terminate, and
upper bounds can be derived for the running times of these algorithms in terms of N, the
number to be factored. The Pollard rho algorithm, Brent's method, and the Pollard p-1
algorithm are probabilistic, and may not finish, even for small values of N.

Example. Consider the Pollard rho algorithm for N = 21 = 73 ⋅ . The sequence of nx
values generated by the algorithm is

 21) (mod 20 ≡x

 21) (mod 512
01 ≡+≡ xx

21) (mod 512
12 ≡+≡ xx

21) (mod 512
1 ≡+≡ −nn xx for 1≥n

 13

 If n ≥ 1, 02 =− nn xx . The algorithm at each step for n = 1, 2, … computes

.),0gcd(),gcd(2 NNNxx nn ==− The algorithm never finds a nontrivial factor, and
never terminates.

Example. Consider the Pollard p-1 algorithm for N = 65 = 513 ⋅ . The sequence of kx
values generated by the algorithm is:

)65 (mod 12 ! −≡ k

kx k = 1, 2, 3, …

 65) (mod 1121
1 ≡−≡x

 65) (mod 3122
2 ≡−≡x

 65) (mod 63126
3 ≡−≡x

 65) (mod 01224
4 ≡−≡x

 65) (mod 01111)(1n1
1 ≡−≡−+≡ ++

+
n

nn xx for 5≥k

 The Pollard p-1 algorithm computes at each step),gcd(Nxk . For the first three

steps, we find that gcd(1, 65) = 1, gcd(3, 65) = 1, and gcd(63, 65) = 1. For steps 4≥k
we find gcd(0, 65) = 65. Hence the algorithm never finds a nontrivial factor, and never
terminates.

V. Conclusion

 There are no known algorithms which can factor arbitrary large integers
efficiently. Probabilistic algorithms such as the Pollard rho and Pollard p-1 algorithm are
in most cases more efficient than the trial division and Fermat factorization algorithms.
However, probabilistic algorithms can fail when given certain prime products: for
example, Pollard's rho algorithm fails for N = 21. Integer factorization algorithms are an
important subject in mathematics, both for complexity theory, and for practical purposes
such as data security on computers.

 14

Appendix A. Maple Source Code for Simulation

> # Define each factorization algorithm

> # Trial division. Factor N, return s, t, iters, where s*t = N, and
 # iters is the number of iterations made through the for loop. If
 # more than maxsteps iterations are made, returns 1, N, maxsteps.
 trial_factor := proc(N, maxsteps)
 local x, y, iters;
 iters := 1;
 for x from 2 to floor(sqrt(N)) do
 if modp(N, x) = 0 then # If y is an integer, return factors.
 return x, N/x, iters;
 fi;
 if iters >= maxsteps then
 return 1, N, maxsteps;
 fi;
 iters := iters + 1;
 od;
 end;

> # Fermat factorization. Same arguments and return value as trial_factor.
 fermat_factor := proc(N, maxsteps)
 local x, y, iters;
 iters := 1;
 # Look for N = x^2 - y^2, for x >= 1, y >= 1.
 # Iterate over x and check y.
 for x from ceil(sqrt(N)) to infinity do
 ySquared := x^2 - N;
 y := isqrt(ySquared);
 if y*y=ySquared then # If y is an integer, return factors.
 return x-y, x+y, iters;
 fi;
 if iters >= maxsteps then
 return 1, N, maxsteps;
 fi;
 iters := iters + 1;
 od;
 end;

> # Pollard rho factorization. Same arguments as trial_factor.
> pollard_rho := proc(N, maxsteps)
 local xi, x2i, f, iters, p;
 # f(x) function iterated in Pollard rho method, we use f(x) = x^2+1.
 f := proc(x)
 return modp(x * x + 1, N);
 end;
 iters := 1;
 # Initial values for x(i) and x(2*i), where i=1. We use x(1) = 2.
 xi := f(2);
 x2i := f(f(2));
 while true do
 # Compute p = gcd(x(i)-x(2*i), N).
 p := gcd(xi - x2i, N);
 # If p is a nontrivial factor, return factors.
 if p <> 1 and p <> N then
 return p, N/p, iters;
 fi;
 # Increase i by one. Note we have to apply f twice to find
 # x(2*(i+1)) = f(f(x(2*i)).
 xi := f(xi);
 x2i := f(f(x2i));

 15

 # Increment iteration counter.
 iters := iters + 1;
 if iters >= maxsteps then
 return 1, N, maxsteps;
 fi;
 od;
 end;

> # Pollard p-1 factorization. Same arguments as trial_factor.
> pollard_p1 := proc(N, maxsteps)
 local two_k_fact, p, k, iters;
 two_k_fact := 2^(1); # 2^(k!) for (initially) k = 1.
 iters := 1; # Number of iterations made through for loop.
 for k from 2 to infinity do
 # Compute p = gcd(2^(k!)-1, N) for current k value.
 p := gcd(two_k_fact - 1, N);
 # If p is a nontrivial factor, return factors.
 if p <> 1 and p <> N then
 return p, N/p, iters;
 fi;
 # Find 2^((k+1)!) = (2^(k!)) ^ (k+1).
 two_k_fact := two_k_fact &^ (k+1) mod N;
 # Increment number of iterations.
 iters := iters + 1;
 if iters >= maxsteps then
 return 1, N, maxsteps;
 fi;
 od;
 end;

> # Brent factorization. Same arguments and return value as trial_factor.
> brent_factor := proc(N, maxsteps)
 local xi, x2i, f, iters, p;
 # f(x) function iterated in Pollard rho method, we use f(x) = x^2+1.
 f := proc(x)
 return modp(x * x + 1, N);
 end;
 iters := 1;
 # Initial values for x(i) and x(m), where i=1.
 xi := f(2);
 xm := 2;
 while true do
 # Compute p = gcd(x(i)-x(m), N).
 p := gcd(xi - xm, N);
 # If p is a nontrivial factor, return factors.
 if p <> 1 and p <> N then
 return p, N/p, iters;
 fi;
 # Increase i by one. Update x(m) as needed.
 if 2^ilog2(iters) = iters then
 xm := xi;
 fi;
 xi := f(xi);
 # Increment iteration counter.
 iters := iters + 1;
 if iters >= maxsteps then
 return 1, N, maxsteps;
 fi;
 od;
 end;

> # Given 'algo', which should be one of the factorization functions
 # defined above, and k, returns the median time to factor the product

 16

 # of two randomly selected k-digit primes, over 100 runs of the algorithm.
> median_steps_for_k_digit_prime := proc(algo, k)
 local i, times, p, q, p1, p2, iter;
 # Initially empty seqence of the number of steps made by the given algo
 # for each pair of random primes.
 times := seq(j, j=0..-1);
 # Run the algorithm 100 times on products of two random k-digit primes.
 for i from 1 to 100 do
 while 1=1 do
 p := rand(10^(k-1)..10^k-1)();
 q := rand(10^(k-1)..10^k-1)();
 if isprime(p) and isprime(q) and p <> q then
 break;
 fi;
 od;
 # Run the algorithm, but bail out after 1e6 steps.
 p1, p2, iter := algo(p*q, 1000000);
 times := times, iter;
 od;
 times := sort([times]);
 return times[1+floor(nops(times)/2)];
 end;

> # Reproduce the median number of steps for each algorithm when
> # given the products of two randomly selected 4-digit primes.
>
> # Vary the last argument to reproduce the data in Figure 1.
>
> median_steps_for_k_digit_prime(trial_factor, 4);
 3342
> median_steps_for_k_digit_prime(fermat_factor, 4);
 101
> median_steps_for_k_digit_prime(pollard_rho, 4);
 40
> median_steps_for_k_digit_prime(pollard_p1, 4);
 36
> median_steps_for_k_digit_prime(brent_factor, 4);
 97

 17

Appendix B. References

[1]. Kalisky, Burt. "RSA Factoring Challenge." USENET newsgroup sci.crypto. March 18, 1991.
Available: http://www.google.com/groups?selm=BURT.91Mar18092126%40chirality.rsa.com ,
Accessed November 17, 2004.

[2]. "General number field sieve." From Wikipedia, an online encyclopedia. November 13, 2004.
Available: http://en.wikipedia.org/wiki/GNFS

[3]. Wesstein, Eric W. "RSA Encryption." From Mathworld, an online encyclopedia. April, 2001.
Available: http://mathworld.wolfram.com/RSAEncryption.html

[4]. Junod, Pascal. "Cryptographic Secure Pseudo-Random Bits Generation: The Blum-Blum-Shub
Generator." August 1999. Available: http://www.win.tue.nl/~henkvt/boneh-bbs.pdf

[5]. Housley et al. "RFC 2459: Internet X.509 Public Key Infrastructure Certificate and CRL
Profile." January, 1999. Available: http://www.faqs.org/rfcs/rfc2459.html

[6]. "Integer factorization – Difficulty and complexity." From Wikipedia, an online encyclopedia.
October 30, 2004. Available: http://en.wikipedia.org/wiki/Integer_factorization

[7]. Weisstein, Eric W. "Fermat, Pierre de." From MathWorld, an online encyclopedia.
Available: http://scienceworld.wolfram.com/biography/Fermat.html

[8]. Weisstein, Eric W. "Pollard Rho Factorization." From MathWorld, an online encyclopedia.
December 28, 2002. Available: http://mathworld.wolfram.com/PollardRhoFactorizationMethod.html

[9]. Weisstein, Eric W. "Brent's Factorization Method." From MathWorld, an online encyclopedia.
December 28, 2002. Available: http://mathworld.wolfram.com/BrentsFactorizationMethod.html

[10]. Ohannessian, Robert J. "Bob's page of mildly useful but still pretty neat code snippets."
February 18, 2003. Available: http://bob.allegronetwork.com/prog/tricks.html

[11]. Weisstein, Eric W. "Pollard Rho Factorization." From MathWorld, an online encyclopedia.
December 28, 2002. Available: http://mathworld.wolfram.com/Pollardp-1FactorizationMethod.html

[12]. Campbell, Robert. "Computation – Exponentiation via the Russian Peasant Algorithm."
March 29, 1998. Available: http://www.math.umbc.edu/%7Ecampbell/Math413Fall98/7-
FermatThm.html

[13]. Lipson, John D. "Newton's method: a great algebraic algorithm." 1976.
Available: http://portal.acm.org/citation.cfm?id=806344

