Review of Basics of 3D Object Representation

Connelly Barnes

CS 6501: Large-scale data-driven graphics and vision

Acknowledgment: slides by Jason Lawrence, Misha Kazhdan, Allison Klein, Tom Funkhouser, Adam Finkelstein and David Dobkin
3D Object Representation

- How do we ...
 - Represent 3D objects in a computer?
 - Construct such representations quickly and/or automatically with a computer?
 - Manipulate 3D objects with a computer?

Different methods for different object representations
3D Objects

How can this object be represented in a computer?
3D Objects

This one?

H&B Figure 10.46
3D Objects

How about this one?

Imaging Economics
3D Objects

This one?

H&B Figure 9.9
3D Objects

This one?
Representations of Geometry

• 3D Representations provide the foundations for
 o Computer Graphics
 o Computer-Aided Geometric Design
 o Visualization
 o Robotics

• They are languages for describing geometry
 data structures algorithms

• Data structures determine algorithms!
3D Object Representations

- **Raw data**
 - Point cloud
 - Range image
 - Polygon soup

- **Surfaces**
 - Mesh
 - Parametric
 - Implicit

- **Solids**
 - Voxels

See slides from the graphics class for more!
Point Cloud

• Unstructured set of 3D point samples
 ◦ Acquired from range finder, random sampling, particle system implementations, etc

Hoppe

Czech Academy of Sciences
Point Cloud

- Unstructured set of 3D point samples
 - Acquired from range finder, random sampling, particle system implementations, etc

Can associate colors/normals/etc. to the points

Czech Academy of Sciences
Range Image

- An image storing depth instead of color
 - Acquired from range scanners — e.g. Microsoft Kinect

Range Image
Tesselation
Range Surface
Polygon Soup

- Unstructured set of polygons
 - Created with interactive modeling systems, combining range images, etc.
3D Object Representations

- Raw data
 - Point cloud
 - Range image
 - Polygon soup

- Surfaces
 - Mesh
 - Parametric
 - Implicit

- Solids
 - Voxels
Mesh

- Connected set of polygons (usually triangles)
 - May not be closed
Parametric Surface

- Tensor product spline patches
 - Careful use of constraints to maintain continuity
Implicit Surface

- Points satisfying: $F(x,y,z) = 0$
3D Object Representations

- Raw data
 - Point cloud
 - Range image
 - Polygon soup

- Surfaces
 - Mesh
 - Subdivision
 - Parametric
 - Implicit

- Solids
 - Voxels
Voxels

- Uniform grid of volumetric samples
 - Acquired from CT, MRI, etc.

FvDFH Figure 12.20

Stanford Graphics Laboratory
Equivalence of Representations

• Thesis:
 o Each fundamental representation has enough expressive power to model the shape of any geometric object
 o It is possible to perform all geometric operations with any fundamental representation!

• Analogous to Turing-Equivalence:
 o All computers today are Turing-equivalent, but we still have many different processors
Computational Differences

• Efficiency
 o Combinatorial complexity
 o Space/time trade-offs
 o Numerical accuracy/stability

• Simplicity
 o Ease of acquisition
 o Hardware acceleration

• Usability